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ABSTRACT

The US workers compensation system is different from those in many countries,
but it is reinsured in the world-wide market and so has international impact.
From its origin in the early 20th century it has been a laboratory for actuarial
credibility techniques. In recent years deductibles have been increasing, so that
fairly high excess coverage is now commonplace. This puts growing emphasis
on estimation of the percentage of loss that is excess of high deductibles.
A key element of the excess percentage is the frequency of loss by injury type.
Fatalities and permanent disabilities cost more than other injury types, so when
they have high relative frequency, more of the claims cost arises from large
losses. The vector of claim frequency by injury type can be estimated by class
of business using multi-dimensional credibility techniques. Historically the
fraction of costs excess of various retentions has been calculated for large
groups of classes (hazard groups) and not individual classes. We show, by
testing a hold-out sample, that credibility estimation by class does produce
additional information in comparison to a widely-used seven-hazard-group
system.

USING MULTI-DIMENSIONAL CREDIBILITY TO ESTIMATE CLASS

FREQUENCY VECTORS IN WORKERS COMPENSATION

The regression framework for credibility started with Hachemeister (1975)
and has generated an impressive literature since. We apply a small portion of
this to estimate vectors of relative frequency by injury type for classes of US
workers compensation insureds. Credibility is non-parametric so it is not usu-
ally considered necessary to look at the actual distributions of the data or the
parameters, but since it is based on minimizing squared error, it may be inap-
propriate for heavy-tailed distributions, where relative error is more important.
Credibility on the logarithms of the data is often suggested in that case. Here,
however, credibility is applied to loss frequencies, which are probably safely
within the applicability of squared error. Some performance tests show that
credibility does help with this estimation.
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US workers compensation classes are based on industry breakdowns and
in some cases even particular occupations within industries, to the extent that
these have different accident potential. For instance, workers comp rates and
excess losses for casting can differ significantly depending on whether you are
casting pig iron, pottery, broken bones, dice or actors. Also, the occupation class
rates vary by state, but usually not among the regions within a state.

Estimating loss costs by class has been a focus of actuaries since the work-
ers compensation system started in 1912. In fact early versions of credibility
theory and even the creation of the Casualty Actuarial Society arose to deal
with workers compensation issues. The recognition that large individual claims
are a driving force in loss costs also came early, with an excess reinsurance
pool formed by 1914. Rating plans that charge large manufacturers their actual
small losses plus expected large losses also have a long history, so excess rates
are not a new topic. However true excess coverage is newer, and is now a large
part of the workers compensation business. Thus there is a growing interest in
estimation of excess loss costs.

This is driving an exploration of methodologies that might be useful for
excess loss estimation. Insurance companies in the US report class-by-state
data to rating bureaus. These bureaus also license data that can be used in
studies of loss risk, but the licenses typically do not allow further dissemina-
tion of the data. Rating bureaus as well as large insurers and reinsurers are
all investigating ways to improve the estimation of excess costs for the class/state
cells. Traditionally this estimation used a four-hazard-group breakout for
estimation of injury-type1 frequencies. Hazard groups are collections of
classes similar in their excess loss potential, relative to total losses. There are
significant claims-cost differences across injury types, so estimating the fre-
quency of claims by type for each hazard group has been the main emphasis
of excess rating.

Recent innovations in excess rating include bureaus using more hazard
groups – as many as nine, with seven being the industry standard – to get more
homogeneity in loss potential; looking at possible differences in claims costs
within an injury type across classes or hazard groups; and looking for better
ways to combine data from different state systems. Some insurers and rein-
surers have tried to produce individual class excess rates, at least for the larger
classes. We compare the proposed class credibility approach to the seven-
hazard-group frequency-only method, and find that it does provide improved
estimation.

There are some variations in the way injury types are defined. We use the
following injury types: fatal, permanent total injury, major permanent partial
impairment, minor permanent partial, temporary total, and medical-only.
We abbreviate these F, PT, major, minor, TT, and med. A typical breakout of
relative frequency and severity by injury type, using TT as the base, is:

74 J. COURET AND G. VENTER

1 A categorization of injuries by severity, defined in more detail below.
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Type: F PT Major Minor TT Med

FREQUENCY RELATIVE TO TT 0.006 0.006 0.085 0.37 1.00 4.3

SEVERITY 60 125 40 4 1.00 0.2

These numbers are illustrative and can vary significantly by state and class,
but they show the extent to which the excess costs are driven by the rare but
expensive serious injuries. Excess losses above different retentions will be dri-
ven by different mixes of injury types, since minor – for example – is much more
frequent but less severe than F or PT. Thus getting a good estimate of the
class relative frequency vector is a key step in calculating excess loss potential.
We will focus on estimating the vector of relativities of F, PT, major, and minor
to TT.

1. DEVELOPMENT OF THE CREDIBILITY PROCEDURE

The serious injury types have low frequencies so class claim counts are fairly
unstable. What helps however is that they are correlated. The physical circum-
stances producing fatal, permanent total, and major permanent partial injuries
are often quite similar, as slight differences in an accident can yield significantly
different outcomes. Thus a class that experiences a lot of major claims is likely
to have a higher-than-average propensity to produce PT and fatal claims as well.
By applying multi-dimensional credibility theory, the correlations can be used
to improve the estimates of each of the elements.

Credibility estimation is similar to regression in that it is a linear model fit
by minimizing squared errors. Taking correlation into account is like doing a
multiple regression, where the levels of several variables get different weights
in estimating the outcomes. However credibility is not exactly the same as re-
gression. Credibility estimates the (unobserved) population mean for a group,
and the sample mean is one of the estimators that gets some credibility. In a
regression the sample mean would be the dependent variable and the factors
(coefficients) would only apply to the other variables. Credibility can be looked
at as a regression for which the dependent variable (the population mean) is
not observed. Instead a model is postulated about how the observed variables
arise stochastically from the unobserved population mean. The data is used to
estimate the parameters of that model in order to minimize the expected squared
error in the estimate of the population mean. The approach below is basically
an application of the methods outlined in Venter (1985).

This is based on a somewhat simplified version of credibility theory, which
is outlined first. In standard credibility theory, an individual insured (policy-
holder or class) is assumed to have n iid observations X1, …, Xn whose distri-
bution is controlled by a parameter q, where q is an instance of a random variable
Q with density p(q). Define m(q) = E (Xj | Q = q ) and v(q) = Var(Xj | Q = q ).
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Often m(q) is called the hypothetical mean and v(q) the process variance.
In classical statistics, m(q) is called the population mean, but Charles Hewitt,
a Bayesian actuary, considered m(q) to be a model construct, not a truly exist-
ing entity, and so called it hypothetical, and the terminology has persisted. Let
m = Em(Q), v = Ev(Q), and a = Var[ m(Q)]. Here v is the expected process vari-
ance and a is the variance of the hypothetical means.

The standard Bühlmann approach is to estimate m(q) linearly as a0 + Saj Xj

by minimizing the expected squared error. The answer is a0 = (1 – z)m, ai = z/n
for j > 0, where z = n /(n + k), k = v/a. Denoting by X* the average of the Xj, this
estimates m(q) by zX* + (1 – z)m = m + z(X* – m) = EX* + z(X* – EX*).

The simplified approach is to start with the estimator zX * + (1 – z) m for
m(q) so only z has to be estimated. This simplification does not give up much
because the best linear estimate of the mean from the observations is the sam-
ple mean. The assumptions imply m(q) = X* + v(q)†e = m + a†j, where e and j
are independent mean 0, variance 1 deviations. This can be generalized some-
what to having two estimators X and Y of C with expected squared errors s2

and t2, respectively, where s and t might even be random variables themselves.
The problem then becomes to find the z that minimizes E{[C – zX + (z – 1)Y ]2}.

The assumptions imply that X = C + se, Y = C + tj. To find z, set the
derivative of the expected squared error to zero. Then 0 = E{[C – zX + (z – 1)Y ]
[Y – X ]} = E{[–zse + (z – 1) tj] [ tj – se]} = E [zs2 e2 + (z – 1)t2 j2] = zE [ s2] +
(z – 1) E[ t2]. Thus z = E( t2) / [E(s2) + E(t2)].

In the credibility model E(s2) is the expected process variance and t2 is
already a constant – the variance of the hypothetical means. The general result
can be expressed as z = [1/E(s2)] / [1/E(s2) + 1/E(t2)] so the weight on X is
proportional to the reciprocal of its variance, and similarly for Y. This is a stan-
dard statistical result.

The multivariate correlated credibility derivation below follows this approach.
The class population means for the injury types are estimated as linear func-
tions of the sample means of all the injury types for the class, and the
coefficients are estimated by minimizing the expected squared error.

This procedure is applied to ratios of claims counts by injury type to TT
claims counts. Denote the observed ratios for the four injury types F, PT, major,
and minor as V, W, X, and Y. Assume that each class has parameters that
determine its distribution of claim counts by injury type but since the para-
meters are unobserved they are considered random variables. For the i th class,
denote its population (or hypothetical) mean ratios as vi, wi, xi, and yi. These
means are among the parameters that are considered random variables since
they are not known.

Focusing on PT, the observed sample claim count ratio to TT, W, for class
i at time t, Wit, based on mit TT claims, can be formulated:

jimi t i t
j

m

1

it

= +
=

t w eW !_ i
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where the ejt are independent mean-zero innovations whose standard devia-
tion sWi varies by class but not by time. This looks at each TT claim as an expo-
sure that could produce a PT claim and sometimes does. As one possible exam-
ple, ejt might be 1 – wi with probability wi and –wi with probability 1 – wi . This
gives it mean 0 and variance s 2

Wi
= wi (1 – wi). Then every TT claim produces a

random draw of 0 or 1, and the sum of these mit draws is the number of PT
claims mitWit . Then Var(Wit |wi) = s 2

Wi
/mit . This is the statistical import of this

formulation. The more TT claims there are, the lower the random fluctuation
of the annual observed class ratio Wit from its mean is assumed to be.

Denote by Wi the class sample mean ratio over all the time periods (assumed
independent):

i i /m mi t i
t

N

t

N

11

=
==

t tW W !!

where there are N periods of observation, and similarly for V, X, and Y.
Let mi denote the sum over times t of the mit and m denote the sum over
classes i of the mi. Then the assumption that Var(Wit | wi) = s2

Wi
/ mit implies that

Var(Wi | wi) = s 2
Wi

/mi .
Taking correlation into account in a linear estimate would estimate an injury-

type ratio to TT for a class as a linear combination of the observations for all
the injury types for that class. The simplified credibility theory uses only those
estimators that are linear combinations of sample means, and looks for the
linear combination that minimizes the expected squared error of the estimate.
Here the expected squared error is taken across all the classes in the hazard
group. For PT this can be expressed as minimizing the expected squared dif-
ference between the linear estimator and the unobserved conditional mean wi :

(1) minimize E [(a + bVi + cWi + dXi + eYi – wi )
2 ],

The coefficients sought are a, b, c, d, and e. Differentiating (1) wrt a gives:

(2) a = –E(bVi + cWi + dXi + eYi – wi ).

Substituting this a back into a + bVi + cWi + dXi + eYi makes this estimate of wi

Ewi + b(Vi – EVi ) + c(Wi – EWi ) + d (Xi – EXi ) + e(Yi – EYi )

The expectation for wi is unconditional, so it is over all classes. If this proce-
dure is done within a hazard group, it then estimates the hazard group mean
ratio of PT to TT. Thus if the class’ own data gets zero credibility, the hazard
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group ratio will be used. Also the unconditional expected value of Wi is Ewi

(the conditional mean is wi), so c is the traditional credibility factor Z. In the
traditional case, the estimation uses only class i ’s own sample mean Wi so the
estimator is Ewi + c(Wi – EWi ) = cWi + (1 – c)EWi .

The derivative of (1) wrt b gives:

aEVi + E [Vi (bVi + cWi + dXi + eYi – wi)] = 0

Plugging in (2) for a then yields:

(– E(bVi + cWi + dXi + eYi – wi)) EVi + E[Vi (bVi + cWi + dXi + eYi – wi)] = 0.

This can be rearranged to give:

(3) Cov(Vi ,wi) = bVar(Vi ) + cCov(Vi ,wi) + dCov(Vi , Xi) + eCov(Vi,Yt ).

Doing the same thing for c, d, and e will yield three more equations that look
like (3), but with the variance moving over one position each time. This will
end up with four equations that can be written as a single matrix equation:

(4)
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where C is the covariance matrix of the class by injury-type sample means,
which show up in (3), for instance. Thus (4) is the requirement needed for b,
c, d, and e to be the optimal weights for estimation of wi.

The problem becomes how to estimate the covariances needed to solve (4).
The variance of Vi conditional on the true class mean vi is s 2

Vi
/mi where s 2

Vi
is 

called the process variance for Vi . The unconditional variance of Vi is EPVV /
mi + VHMV, where the latter term, the variance of the hypothetical means for
V, is the variance across the classes of the unobserved V means vi. EPVV is
E(s 2

Vi
), which does not depend on i as the expectation is across all classes.

This uses the well-known formula Var(Vi ) = E[Var(Vi |l)] + Var[E(Vi |l)].
Assuming the conditioning is on all the unobserved parameters for the class,
the analogous formula for covariance is Cov(Vi, Wi ) = E [Cov(Vi,Wi | l)] +
Cov[E(Vi |l), E(Wi |l)] = E [Cov(Vi ,Wi |l)] + Cov(vi,wi). Since W is wi plus a
random innovation independent of wi, Cov(Wi , wi) is Cov(wi, wi) which is
VHMW. Similarly, Cov(Vi, wi ) = Cov(vi, wi), etc.

This model assumes that the ratios observed for any year for each type
of injury by class are the class-injury means plus independent random draws.
This assumption makes E[Cov(Vi ,Wi |l)] zero. This can be seen by expanding
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E(ViWi) and E(Vi )E(Wi ) in terms of means and independent innovations. Thus
Cov(Vi,Wi ) = Cov(vi,wi) which can be estimated by the sample covariance.

Thus the off-diagonal elements of C can be estimated by the sample covari-
ances, Cov(Wi , wi) is VHMW and the covariances of Vi, Xi , and Yi with wi are
their covariances with Wi from the sample covariance. A reasonable calcula-
tion of the sample covariance, say of V and W, would seem to be

S (Vi – V ) (Wi – W )mi /m = SViWi mi /m –VW.

The estimates of VHMW and EPVW, etc. needed for this are standard in cred-
ibility theory. One reference is Dean (2005) who gives the following formula
for VHMV, converted to our notation:

(5)
2

/V M m V R E V m m mH P1 1
V i i V

i

R

i
i

R

1

2

1

= - - - -
= =

V! !^ ^e deh h o n o.

Here V is the weighted average of the Vi’s using weights mi and EPV is esti-
mated from the sample variances for each class. This estimate can be negative,
in which case it is set to 0, as then EPV accounts for all the observed varia-
tion and there is no support for individual risk differences. Also Dean (2005)
gives:

(6)
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Note that this is not divided by the sum of the m’s as it is the process variance
per unit of exposure, which here is the TT count. The diagonal elements of C
for the i th class are then EPVV /mi + VHMV, EPVW /mi + VHMW, etc.

2. PERFORMANCE TESTING

We had seven years of class data, at various levels of maturity, for the esti-
mation, but for testing we discarded the quite immature first report. As a test,
we calculated injury-type relativities from the even reports (2, 4, and 6) and used
these to predict the hold out sample of odd reports (3, 5, and 7). Holding out
the last two years and predicting by the older years gave comparable results.
For testing credibility itself, the current approach seems to make more sense,
as it is more neutral with respect to trend and loss development. Table A sum-
marizes the sum of squared prediction errors by hazard group for the ratio of
major permanent partial to temporary total claims. The squared errors are
calculated for each combination of state and class – about 16,000 observations
overall. Table B lists totals for all injury types.
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The credibility procedure yields a modest reduction in the sum of squared
prediction errors. The credibility procedure is designed to minimize the
expected deviation between the true class mean and its sample estimator over
the same time period (the even years). In performance testing, however, a three-
year holdout sample of odd years is used as a proxy for the even year’s true
mean. That is, the estimator derived from even-year data is compared to the
ratio for the holdout sample from odd years. Thus, there is some disconnect
between the expectation being minimized and the statistic being used to gauge
performance.

Relative incidence ratios are impacted by unknown covariates – with levels
varying between odd and even years, indeed over all years. Such unknown
effects contribute to the error of the predictions. A class code represents the
experience of a dynamic portfolio of individual insurance policies whose com-
position varies over time. In addition, the individual class-state ratios are quite

80 J. COURET AND G. VENTER

TABLE A

SUM OF SQUARED PREDICTION ERRORS – MAJOR PERMANENT PARTIAL CLAIMS

(1) (2) (3) (4)
Hazard Prediction Prediction Prediction
Group Based on HG Based on Raw Even Based on Cred. Proc.

A 33.4 52.9 33.0
B 206.9 363.2 205.1
C 250.8 479.3 248.0
D 89.9 129.9 89.3
E 333.2 484.0 330.8
F 247.1 306.3 242.6
G 263.7 386.2 256.9

Total 1,425.0 2,201.7 1,405.6

TABLE B

SUM OF SQUARED PREDICTION ERRORS BY INJURY TYPE

(1) (2) (3) (4)
Injury Prediction Prediction Prediction
Type Based on HG Based on Raw Even Based on Cred. Proc.

Fatal 43.6 65.2 43.5
PT 34.7 83.6 34.6
Major PP 1,425.0 2,201.7 1,405.6
Minor PP 6,756.9 10,360.3 6,558.0
Med. Only 417,260.8 434,837.9 351,270.8
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volatile. Improving the estimates of the means might produce only a small
improvement in the total sum of squared errors.

Interestingly, researchers trying to test the Capital Asset Pricing Model
(CAPM) faced a similar measurement problem. Under CAPM, individual
excess stock returns are hypothetically proportional to beta. The Security Mar-
ket Line (SML) is a graphical representation of this relationship. Early tests
of CAPM which focused on empirical validation of the SML ran into statis-
tical problems. Bodie, Kane and Marcus (BKM) write:

“The next wave of tests was designed to overcome the measurement error problem
that led to biased estimates of the SML. The innovation in these tests, pioneered
by Black, Jensen, and Scholes (BJS), was to use portfolios rather than individual
securities. Combining into portfolios diversifies away most of the firm-specific part
of the returns, thereby enhancing the precision of estimates of beta and the expected
rate of return of the portfolio of securities. This mitigates the statistical problems
that arise from measurement error in the beta estimates.”

Instead of assigning stocks to portfolios randomly, BJS sort by descending beta
and then group by quantile. BKM, in their heuristic explanation of BJS, write:

“.. we need to construct portfolios with the largest possible dispersion of beta
coefficients. Other things being equal, a sample yields more accurate regression esti-
mates the more widely spaced are the observations of the independent variables.”

“Rather than allocate 20 stocks to each portfolio randomly, we can rank portfolios
by betas. Portfolio 1 will include the 20 highest-beta stocks and Portfolio 5 the 20 low-
est beta stocks. In that case a set of portfolios with small nonsystematic components,
ep , and widely spaced betas will yield reasonably powerful tests of the SML.”

CAPM is a theory about the relationship between beta and expected excess return.
Even an average of returns for an individual stock is volatile. Additionally,
there are systematic effects that vary over time, which means that a firm’s beta
is not constant over time. The BJM approach of using portfolios diversifies
away the systematic, firm specific part of variation in returns.

In our case, performance testing based on a sum of squared errors criteria
only produces a slight improvement; however, testing based on ranked port-
folios of state-class combinations demonstrates a significant improvement.
Our approach is based on the “quintiles test”, a technique developed by NCCI
for testing their experience rating plan.

Dorweiler wrote in 1934:

“A necessary condition for proper credibility is that the credit risks and debit risks
equally reproduce the permissible loss ratio. Also, if the proper credibility has been
attained, each [random] subgroup of the credit and debit risks, provided it has ade-
quate volume, should give the permissible loss ratio.”

Gillam (1992) explains that the “quintiles test” is a logical extension of Dor-
weiler’s criteria. (Dorweiler’s groups were defined by modification range,
but varied by size.) In our analysis, class relativities to the hazard group aver-
age are analogous to the experience rating modifications of interest to Gillam.
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We illustrate the procedure using W relativities for classes in the fairly large haz-
ard group D, but the procedure for the other injury types is the same. This is
illustrated in Table C.

For the quintiles test, the classes within hazard group D were first grouped
by credibility weighted relativity from the even years’ data into five groups of
roughly equal size. (The boundaries were selected to make the number of TT
claims in each quintile about equal.) The lowest 20% of the credibility weighted
class relativities belong to the risks in the first quintile; the next 20% to the sec-
ond; and so on. Column (2) represents the average relative frequency W for the
classes in the quintile divided by the corresponding estimate for all of hazard
group D. For example, the relative frequency of PT claims (as a ratio to TT)
for the classes in the first quintile is about half of the hazard group average;
the fifth quintile average exceeds the hazard group average by 52%. Upwardly
sloping relativities are desirable, indicating that the credibility procedure used
to determine quintiles tends, on average, to identify class differences in W.

The goal is to predict the column (2) frequency relativity for each quintile.
Column (3) is a prediction based on the hazard group average. All its entries
are equal to unity – since by assumption every quintile has the hazard group
D relative frequency for PT. The predictions in Column 4 are based on raw class
relativities observed for the even years. The aggregation of the classes in the
fifth quintile, for example, has an even year relative PT frequency that is 215%
of the hazard group average. Column (5) predictions were derived using the
multi-dimensional credibility procedure described in this paper.

The exhibit is based on five groups with about 1400 PT claims in the even
years. As expected, the ratios in column (2) increase across the quintiles; classes
for which credibility predicts high relativities using even year data tend to gen-
erate high relativities during the odd years. The predictions in column (3), are
too high for the first three quintiles and too low for the last two; the sum of

82 J. COURET AND G. VENTER

TABLE C

ILLUSTRATION OF QUINTILES TEST – HAZARD GROUP D, PERMANENT TOTAL CLAIMS

(1) (2) (3) (4) (5)
Quintile Odd Prediction Prediction Prediction

Relativity Based on Based on Based on
HG Raw Even Cred. Procedure

1 0.4951 1.0000 0.3065 0.5648
2 0.8634 1.0000 0.4260 0.8732
3 0.9861 1.0000 0.7513 1.0000
4 1.1269 1.0000 1.3473 1.1038
5 1.5215 1.0000 2.1547 1.4519

Mean 1.0000 1.0000 1.0000 1.0000
SSE 0.5618 0.7315 0.0105
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squared prediction errors based on column (3) predictions is 0.5618. Similarly,
the sum of squared prediction errors based on column (4) predictions is 0.7315.
The upward slope in column (4) is too steep; the odd years exhibit regression
toward the mean. The credibility procedure predictions in column (5), have a
sum of squared prediction errors of 0.0105. To the extent the class relativity
procedure performs, the ratios in column (5) will track those in column (2); pro-
ducing a lower sum of squared deviations.

As indicated by the sum of squared prediction errors in Table D, the results
are similar for most other combinations of injury type and hazard group,
the exception being hazard group A for all three injury types. The quintiles test
suggests that hazard group A is homogeneous and the credibility procedure is
not improving the estimation there, although the sum of individual squared
errors is slightly better for the credibility estimates. For major the raw class data
provides surprisingly good estimates for the quintiles as a whole once these
have been defined by the credibility procedure. These estimates are quite good
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TABLE D

QUINTILES TEST SUM OF SQUARED PREDICTION ERRORS BY HAZARD GROUP AND INJURY TYPE

Prediction Prediction Prediction
Injury Based on Based on Based on

HG Type HG Raw Even Cred. Proc.

A Fatal 0.13227 0.94431 0.18952
B Fatal 0.32630 1.79940 0.05637
C Fatal 0.83604 1.39413 0.03376
D Fatal 0.97498 0.87260 0.12111
E Fatal 0.49691 1.44023 0.05096
F Fatal 0.39060 1.35362 0.07280
G Fatal 0.55650 1.23015 0.06035

A PT 0.03941 1.94151 0.57993
B PT 0.38273 1.34145 0.11044
C PT 0.56175 0.55609 0.01180
D PT 0.56183 0.73151 0.01053
E PT 0.73195 0.82350 0.07050
F PT 0.56872 0.53817 0.01812
G PT 1.09139 0.52326 0.07946

A Major 0.58481 0.01988 0.05079
B Major 0.33888 0.03729 0.00870
C Major 0.38001 0.04108 0.00738
D Major 0.18900 0.03928 0.01850
E Major 0.28775 0.07476 0.01030
F Major 0.32418 0.04703 0.01781
G Major 0.58518 0.14046 0.00538
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FIGURE 1: Distribution of Predicted PT:TT Ratios by Hazard Group.

FIGURE 2: Distribution of Predicted Major:TT Ratios by Hazard Group.
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for minor as well (not shown). However Table B shows that raw class data
does poorly in predicting individual class ratios for all injury types.

Thinking in R2 terms, the class relativities could be said to “explain” 98%
of the “between quintiles” variance. This is not actually a regression, but the
statistic is still impressive by real-life actuarial standards. The use of class rel-
ativities significantly improves the class frequency by injury type estimation.

The predicted mean ratios by class are distributed around the hazard-group
ratios. In some cases these distributions are fairly tight, and in other cases fairly
dispersed. Figure 1 illustrates this for PT. Figure 2 is the comparable graph for
Major.

In both cases the later hazard groups have higher means and greater dis-
persion of classes about the mean.

3. CONCLUSIONS

Individual class experience contains information relevant to future large loss
relative frequency. A correlated credibility approach using the relationships
among injury-type frequencies within each class can utilize this information.
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